- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Lijie (3)
-
Santhanam, Rahul (3)
-
Jin, Ce (2)
-
Lu, Zhenjian (1)
-
Oliveira, Igor C (1)
-
Ren, Hanlin (1)
-
Williams, R. Ryan (1)
-
Williams, Ryan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
For a complexity class $$C$$ and language $$L$$, a constructive separation of $$L\notin C$$ gives an efficient algorithm (also called a refuter) to findcounterexamples (bad inputs) for every $$C$$-algorithm attempting to decide $$L$$.We study the questions: Which lower bounds can be made constructive? What arethe consequences of constructive separations? We build a case thatconstructiveness serves as a dividing line between many weak lower bounds weknow how to prove, and strong lower bounds against $$P$$, $ZPP$, and $BPP$. Putanother way, constructiveness is the opposite of a complexity barrier: it is aproperty we want lower bounds to have. Our results fall into three broadcategories. 1. Our first set of results shows that, for many well-known lower boundsagainst streaming algorithms, one-tape Turing machines, and query complexity,as well as lower bounds for the Minimum Circuit Size Problem, making theselower bounds constructive would imply breakthrough separations ranging from$$EXP \neq BPP$$ to even $$P \neq NP$$. 2. Our second set of results shows that for most major open problems in lowerbounds against $$P$$, $ZPP$, and $BPP$, including $$P \neq NP$$, $$P \neq PSPACE$$,$$P \neq PP$$, $$ZPP \neq EXP$$, and $$BPP \neq NEXP$$, any proof of the separationwould further imply a constructive separation. Our results generalize earlierresults for $$P \neq NP$$ [Gutfreund, Shaltiel, and Ta-Shma, CCC 2005] and $$BPP\neq NEXP$$ [Dolev, Fandina and Gutfreund, CIAC 2013]. 3. Our third set of results shows that certain complexity separations cannotbe made constructive. We observe that for all super-polynomially growingfunctions $$t$$, there are no constructive separations for detecting high$$t$$-time Kolmogorov complexity (a task which is known to be not in $$P$$) fromany complexity class, unconditionally.more » « less
-
Chen, Lijie; Lu, Zhenjian; Oliveira, Igor C; Ren, Hanlin; Santhanam, Rahul (, IEEE)
-
Chen, Lijie; Jin, Ce; Santhanam, Rahul; Williams, R. Ryan (, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS))
An official website of the United States government
